Copied to
clipboard

G = S32xC2xC6order 432 = 24·33

Direct product of C2xC6, S3 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S32xC2xC6, C62:30D6, C33:2C24, C62:13(C2xC6), (S3xC62):10C2, C32:2(C23xC6), C32:7(S3xC23), (C32xC6):2C23, (S3xC32):2C23, (C3xC62):10C22, C6:1(S3xC2xC6), (S3xC2xC6):9C6, C3:1(S3xC22xC6), (C2xC6):11(S3xC6), (C3xS3):(C22xC6), (S3xC6):10(C2xC6), C3:S3:2(C22xC6), (C3xC3:S3):2C23, (S3xC3xC6):24C22, (C3xC6):7(C22xS3), (C3xC6):2(C22xC6), (C22xC3:S3):13C6, (C6xC3:S3):24C22, (C2xC6xC3:S3):11C2, (C2xC3:S3):12(C2xC6), SmallGroup(432,767)

Series: Derived Chief Lower central Upper central

C1C32 — S32xC2xC6
C1C3C32C33S3xC32C3xS32S32xC6 — S32xC2xC6
C32 — S32xC2xC6
C1C2xC6

Generators and relations for S32xC2xC6
 G = < a,b,c,d,e,f | a2=b6=c3=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 2080 in 642 conjugacy classes, 208 normal (12 characteristic)
C1, C2, C2, C3, C3, C3, C22, C22, S3, S3, C6, C6, C23, C32, C32, C32, D6, D6, C2xC6, C2xC6, C2xC6, C24, C3xS3, C3xS3, C3:S3, C3xC6, C3xC6, C22xS3, C22xS3, C22xC6, C33, S32, S3xC6, S3xC6, C2xC3:S3, C62, C62, C62, S3xC23, C23xC6, S3xC32, C3xC3:S3, C32xC6, C2xS32, S3xC2xC6, S3xC2xC6, C22xC3:S3, C2xC62, C3xS32, S3xC3xC6, C6xC3:S3, C3xC62, C22xS32, S3xC22xC6, S32xC6, S3xC62, C2xC6xC3:S3, S32xC2xC6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C24, C3xS3, C22xS3, C22xC6, S32, S3xC6, S3xC23, C23xC6, C2xS32, S3xC2xC6, C3xS32, C22xS32, S3xC22xC6, S32xC6, S32xC2xC6

Smallest permutation representation of S32xC2xC6
On 48 points
Generators in S48
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 5 3)(2 6 4)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 39 41)(38 40 42)(43 45 47)(44 46 48)
(1 23)(2 24)(3 19)(4 20)(5 21)(6 22)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 37)(32 38)(33 39)(34 40)(35 41)(36 42)
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 31)(7 28)(8 29)(9 30)(10 25)(11 26)(12 27)(13 46)(14 47)(15 48)(16 43)(17 44)(18 45)(19 40)(20 41)(21 42)(22 37)(23 38)(24 39)

G:=sub<Sym(48)| (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,23)(2,24)(3,19)(4,20)(5,21)(6,22)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,28)(8,29)(9,30)(10,25)(11,26)(12,27)(13,46)(14,47)(15,48)(16,43)(17,44)(18,45)(19,40)(20,41)(21,42)(22,37)(23,38)(24,39)>;

G:=Group( (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,23)(2,24)(3,19)(4,20)(5,21)(6,22)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,28)(8,29)(9,30)(10,25)(11,26)(12,27)(13,46)(14,47)(15,48)(16,43)(17,44)(18,45)(19,40)(20,41)(21,42)(22,37)(23,38)(24,39) );

G=PermutationGroup([[(1,11),(2,12),(3,7),(4,8),(5,9),(6,10),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,5,3),(2,6,4),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,39,41),(38,40,42),(43,45,47),(44,46,48)], [(1,23),(2,24),(3,19),(4,20),(5,21),(6,22),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,37),(32,38),(33,39),(34,40),(35,41),(36,42)], [(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,31),(7,28),(8,29),(9,30),(10,25),(11,26),(12,27),(13,46),(14,47),(15,48),(16,43),(17,44),(18,45),(19,40),(20,41),(21,42),(22,37),(23,38),(24,39)]])

108 conjugacy classes

class 1 2A2B2C2D···2K2L2M2N2O3A3B3C···3H3I3J3K6A···6F6G···6X6Y···6AN6AO···6AW6AX···6BU6BV···6CC
order12222···22222333···33336···66···66···66···66···66···6
size11113···39999112···24441···12···23···34···46···69···9

108 irreducible representations

dim111111112222224444
type+++++++++
imageC1C2C2C2C3C6C6C6S3D6D6C3xS3S3xC6S3xC6S32C2xS32C3xS32S32xC6
kernelS32xC2xC6S32xC6S3xC62C2xC6xC3:S3C22xS32C2xS32S3xC2xC6C22xC3:S3S3xC2xC6S3xC6C62C22xS3D6C2xC6C2xC6C6C22C2
# reps1122122442212242441326

Matrix representation of S32xC2xC6 in GL6(F7)

600000
060000
006000
000600
000060
000006
,
100000
010000
003000
000300
000060
000006
,
100000
010000
001000
000100
000061
000060
,
100000
010000
006000
000600
000006
000060
,
610000
600000
006100
006000
000010
000001
,
060000
600000
000600
006000
000060
000006

G:=sub<GL(6,GF(7))| [6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,6,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,6,0],[6,6,0,0,0,0,1,0,0,0,0,0,0,0,6,6,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,6] >;

S32xC2xC6 in GAP, Magma, Sage, TeX

S_3^2\times C_2\times C_6
% in TeX

G:=Group("S3^2xC2xC6");
// GroupNames label

G:=SmallGroup(432,767);
// by ID

G=gap.SmallGroup(432,767);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^6=c^3=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<